Do Scientists accept Management Processes?

Scientists’ acceptance or rejection of management processes has been historically a controversial issue not only at a corporate level but also at a research level. The method used by a researcher reveals the underlying theory associated with this method and determines to a certain extent the results obtained and hence, their interpretation. In order to frame this issue sufficiently defining “scientist”, “technical processes”, “management processes” as well as explaining what it means to reject or accept such processes, is important.

From a research-based view, Science can be defined as the process in which a researcher (Scientist) collects and redefines data and uses a qualitative/quantitative or mixed methodologies to achieve certain results from which specific conclusions can be drawn. Performing scientific processes at a macro-level (e.g. societies and businesses) or at a micro-level (groups with similar characteristics, e.g. engineers, managers) stems from the need to understand the various dynamics of our environments. This tendency towards identifying the stimuli of such environments is well incorporated in human nature. Scientists performing research originating from interest, dedication or passion for inventing or discovering novel results for the benefit of the community will be referred as basic researchers.

In practice, scientific research is to an extent restricted. Scientists working in a corporate environment need to carry out specific research projects that are aligned with the strategy of the company. In other words, a “corporate scientist” (also referred as applied researchers) does not have the free will to choose his subject of research. In theory, corporate scientists may not accept management processes because such processes directly affect their day-to-day work and restrict their research spectrum. Conversely, technical processes are accepted since these are compatible with scientists’ academic and research background. However, this is not always the case.

Consider that many corporate scientists work for contract research organisations (CRO) or fully integrated pharmaceutical companies (FIPCO) that perform clinical trials on their own. Corporate scientists in such organisations are very commonly involved in completing protocols: a set of actions that must be completed, as required by the company or regulatory authorities, in order to achieve certain targets. A concrete example is the involvement of scientists in clinical development process (phase I, II and III). Scientists work together to collect and validate data on patients based on the protocols provided by the regulatory authorities (FDA, EMA etc.). Such protocols are not rejected by corporate scientists but they are not fully endorsed either; because in a way protocols restrict them in a typical process that does not require the use of skills and expertise that scientists have developed throughout their lives. Hence, scientists may not accept all technical processes just because their academic and research backgrounds are considered “compatible” with certain research subjects.

Based on the discussion above, a fundamental difference can be observed; in general terms, a corporate scientist is less autonomous than a basic researcher. To situate this distinction within a philosophical framework, basic researchers have more power of self-government in their work life and are more able to exercise this power than corporate scientists. Having the ability and the opportunity to make a decision are prerequisites of having the power of self-government. The two factors determining the degree of autonomy of a scientist are the existence of realistic alternatives and the provision of sufficient information. However, there are very few or no alternatives for corporate scientists, since they tasks they have to complete are pre-determined. Instead, basic researchers have sufficient information to decide on the topic to dedicate time and effort on.

The problem for corporate scientists lies in the fact that in most large corporations there is a top-down approach, which hampers the ability of scientists to understand management processes in the same way managers do. This constraint however, can be removed if the company is open to new ideas and allows its scientists to articulate their research ideas to the upper management which will then review them and decide if these are aligned with the overall strategy of the company. In such process, an entrepreneurial spirit is developed and it can have a huge positive effect on the company’s potential to innovate in the long-term. Establishing this culture, is very common in early and mid-stage biotech firms where the company is mostly focused on R&D.

In my view, one of the reasons big pharma suffers from lack of innovation is that big pharma corporations, due to their size, have adopted the top-down approach that does not leave much room for ideas to be generated from bottom-up. And that is way, pharma’s way out of this challenge is to acquire biotech firms with promising products in their pipeline.


Dimitris uses its unique blend of studies in Management and Biotech combined with his quick witted entrepreneurial spirit to provide deep insights into strategic and financial aspects of the Biotech industry.

Leave a Reply

Your email address will not be published. Required fields are marked *